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An Examination of Complex Systems in 16 Dimensions 

Description: 

With the research of Dr. Rodrigo Obando, I have created an application to observe 

cellular automata rules spaces. The elementary rule space with two hundred and fifty-six rules 

proves easy enough to study, but the next rule space of 4,294,967,296 rules is much more of a 

challenge. Such an enormous jump makes studying each rule and its neighbors extremely time 

consuming. My program takes a rule from the 4 billion rule space and displays its neighbors in 

their appropriate cardinal directions. 

Abstract: 

Sir Isaac Newton studied the world around him. He observed unexplainable phenomena 

that the math of his time could not prove. With the help of Gottfried Leibniz, he created 

infinitesimal calculus to prove his theories. The new concepts he created revolutionized 

science, and opened new realms of science previously unthought-of. In 2002, Dr. Stephen 

Wolfram published A New Kind of Science. He argues that the processes of understanding 

cellular automata can be applied to other aspects of science. Dr. Rodrigo Obando of Columbus 

State University took Dr. Wolfram's work and dissected it. By breaking down the rules, he 

started seeing patterns emerge in their ordering. He created a system for organizing the rules 

of the elementary cellular automaton rule space with 256 rules. From there, he guided me to 

the next rule space of size 4,294,967,296.1 used his procedures to examine that rule space. My 

program takes a rule and displays all of the neighboring rules in that rule space. Essentially, I am 

taking a node of a 16-dimensional hypercube and showing all of the neighboring nodes. This 

design has not been publicly created to my or Dr. Obando's knowledge. Understanding the 

patterns of cellular automata and what makes one rule different from a neighboring rule can be 

applied to other forms of science. This is what Dr. Stephen Wolfram stated in A New Kind of 

Science, and I firmly agree with his statement. Any exploration of the next rule space will bring 

us closer to seeing Dr. Wolfram's theory come true. 
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Introduction 

Anytime a computer's power button is pressed or an email arrives in an inbox, anytime 

the internet is viewed or a digital game is played, no one ever asks the question, "How did this 

ever come to be"? Does any typical person even know how or why these machines were created? 

When John von Neumann's name is mentioned, does anyone other than scientists or 

mathematicians raise an eyebrow? We use technology directly influenced by him each and every 

day. Von Neumann's research in automata theory is the focus of this paper, specifically with 

regards to the correlation between the arrangement of the rules in this theory and the output 

produced in the system. 

John von Neumann was born in 1903. A child prodigy, he became one of the most 

influential mathematicians of his time by his mid-twenties. Von Neumann is often referred to as 

the father of computer science, as his work directly led to the creation of the first computer. 

Some of his research areas included set theory, quantum theory, and automata theory. Von 

Neumann's automata theory consists of cellular automata and other abstract concepts. The 

Britannica Academic Edition describes cellular automata as the "simplest model of a spatially 

distributed process that can be used to simulate various real-world processes". In this model, 

cellular automata are represented as a two-dimensional array of blocks. The state of the current 

block's neighbors changes the state of the lower block. Cellular automata simulation capabilities 

present a wide range of uses for scientists and mathematicians alike. After the passing of von 

Neumann in 1957, cellular automata essentially fell off most scientists' radar. With only a few 

papers published on the topic from the 1960s to the 1980s, it seemed cellular automata would be 

forgotten. 
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In the 1980s, another child-genius-turned-scientist Dr. Stephen Wolfram awakened the 

realm of cellular automata once more. Throughout the decade, Dr. Wolfram published a 

collection of papers on the subject. For many years, he researched complexity and John von 

Neumann's discovery of cellular automata. In 2002, Dr. Wolfram finally finished and published 

A New Kind of Science. Stephen took the foundations of cellular automata laid out by John von 

Neumann and expounded upon them in this book. He argued that cellular-automata-based- 

computer models allow scientists to better understand the complexity of nature. In essence, he 

claimed that nature functions like a computer and is not random. Dr. Wolfram's work on cellular 

automata is ongoing, and with the development of his computer program, Mathematica, Dr. 

Wolfram has been able to solidify funding for his research. There exists a mutually beneficial 

relationship between the two. Researchers, teachers, and even students have access to 

Mathematica. In fact, all the experiments performed in this paper were done so using 

Mathematica. 

Cellular Automata 

Cellular automata are models. We can imagine that there is a series of square blocks. We 

can say that each block is represented by a bit, one or zero, which represents the color of each 

block. Zero is white and one is black. The route taken at this point determines how the cellular 

automata react. The default choice for Dr. Wolfram was to take only one cell to the right and left 

of the target cell, so that only three cells are in the scope of each decision. The formula to 

represent the number of elementary cellular automata is kk '    where k is the number of states 

and r is the number of cells to examine on both sides, the radius. The elementary cellular 

automata rule space uses k - 2 (binary: 0, 1) and r = 1 (three cells to use: central, left, and right). 

The formula for the elementary rule space is 22 = 256. There are two hundred and fifty-six 
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rules in the smallest cellular automata rule space. If we simply increase the number of cells used 

by one on each side, (2(2) + 1), our equation becomes 2Z  = 4,294,967,296. That means there are 

four billion two hundred ninety-four million nine hundred sixty-seven thousand two hundred and 

ninety-six rules! 

Each rule produces a distinct graph. Dr. Stephen Wolfram only used the elementary 

cellular automata for that reason. In his book, he listed and ordered the two hundred and fifty-six 

rules sequentially. With sequential ordering, no obvious patterns exist throughout the rule space. 

Dr. Rodrigo Obando undertook the task of discovering why there were no discernible patterns. 

The big picture is that the inputs to the bit string as well as the rules are deterministic; we know 

exactly what the bits and rules are before we apply the rules. However, the output seems random. 

This is a problem mathematically, scientifically, and philosophically. No deterministic system 

should produce random output. Dr. Stephen Wolfram accepted the fact that the distribution of 

behavior is random, but Dr. Obando could not let the thought slide so easily. Instead, he created 

a program that performs specifically designed algorithms on each rule which allows him to 

partially organize the rules. 

Cellular automata rules are categorized into one of three classes: Class 1, Class 2, Class 

3, and Class 4. Class 1 is uniform. There are no variations from cell to cell. Class 2 is semi- 

uniform. Here, the uniformity can be seen, but inconsistencies with neighboring cells make 

distinctly not uniform patterns. Class 3 is random. The randomness of Class 3 cellular automata 

creates more questions than answers. How can deterministic values produce seemingly random 

output? Below are examples of these classes: 
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An example of Class 1: Rule 222 

An example of Class 2: Rule 112 

An example of Class 3: Rule 135 

After using his program to organize the rules into a grid, Dr. Obando noticed something 

peculiar. Clusters of similar classes showed over the entire grid. After further investigation, there 
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appeared to be a pattern when moving from one rule to the next on the grid. This paper is 

comprised of an explanation of the movement between rule spaces. I created a program that 

traverses the 4 billion rule space using Dr. Rodrigo Obando's designs and research. 

Example Rule: 

rule JO 

IT) rnm 

o o 

Rule 30 from the elementary cellular automata rule space (256) is shown above. The first 

row of inputs is deterministic. The middle bit is flipped. Then, the rules are applied giving this 

seemingly random output. Below is the same rule, expanded. 

The more a rule is expanded, the easier the patterns are to detect. Many computer scientists break 

down Class 3 into two parts, saying that Class 3 is completely random while Class 4 is complex 
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(uniform parts and random parts). In Rule 110, we can see distribution of semi-uniform and 

random portions, so it is Class 4. 

Investigation 

The elementary rule space investigation of 256 rules proves easy enough. 

Scientist can look at each rule and its neighbors without too much trouble. However, the 4 billion 

rule space is not such an easy task. Viewing the entire space at once takes too much computer 

memory and requires huge screens. Most scientists condense the space to one rule at a time. Dr. 

Obando's research tries to find clusters of similar classes. I created a tool using Mathematica to 

view a rule and its neighbors. This paints a better picture of the surrounding rules rather than just 

seeing a rule individually. 

First, I take a rule. By default, the rule is 0 unless specified by the user. Then, I 

create a list of the neighboring rules by using Rest[NeighborRules[rule, 2]]. The NeighborRules[ 

rule, radius ] function takes a rule and a radius. Then, it creates a list of lists with the rule and 

neighbors as subsets in each cardinal direction. The Rest[expr ] function makes a new list out of 

§22£3S£3S2S£ 
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all list components other than the first element. This leaves me with a list of lists of neighboring 

rules. The Flatten[ list ] function takes my list of lists and consolidates each inner list into a 

single complete list. The results are as follows: 

Res t[NeighborRules[rule,  2 ] ] 

Flatten[Rest[NeighborRules[rule,  2]] ] 

{{31, 286, 542, 1054, 2078, 65 566, 131102, 262174, 

524 318, 16 777 246, 33 554 462, 67108 894, 134 217 758},  {22, 26, 28}, 

{62, §4, 158, 4126, 8222, 16414, 32 798, 1048 606, 2097182, 4194 334, 

8388638, 268 435486, 536870942, 1073741854, 2147483678},  {14}} 

{31, 286, 542, 1054, 2078, 65 566, 131102, 262174, 524 318, 16 777246, 33 554 462, 

67108 894, 134 217 758, 22, 26, 28, 62, 94, 158, 4126, 8222, 16 414, 32 798, 1048 606, 

2 097182, 4194 334, 8 388 638, 268 435 486, 536 870 942, 1073 741854, 2147 483 678, 14} J 

Then, I pass that resulting list into the Map[/ expr ] function as the expression along with my 

variables rule and str as the function. Map[] takes the rule and maps it to each piece of my list to 

give the following output: 

Map [{rule-* if,  *tr ) £, Flatten [Rest [NeighborRules [rule, 2]]]] J 
{{30 

{30 

{30 

{30 

{30 

{30 

{30 

{30 

{30 

{30 

{30 

{30 

{30 

-i 31,  2164 260865}, 286, 2164260865},  {30-,542, 2164260665}, 

-* 1054, 2164 260 865},  {30-> 2078, 2164 260 865},  {30 -* 65 566, 2164 260 865}, 

•» 131102, 2164 260 865},  {30'-# 262174, 2164 260 865}, 

-* 524 318, 2164 260 865},  {30-* 16 777 246, 2164 260 865}, 

-, 33554462, 2164260 865},   {30 -» 67108 894, 2164 260 865}, 

-* 134217758, 2164260865},  {30 •* 21, 2164260865},  {30-26, 2164260865}, 

-,28, 2164260865},  {30-» 62, 2164260865},  [30-» 94, 2164260B65}, 

•♦158, 2164260865},  {30-* 4126, 2164260865},  {30-> 8222, 2164260865}, 

-16 414,  2164 260 865},  {30-32 798,  2164 260 865},  {30-1048 606, 2164 260 8 

-» 2 097182, 2164 260 865},  {30-, 4 194 334, 2164 260 865}, 

-» 8388638, 2164260865},  {30^268 435 486, 2164260865}, 

-» 536870942, 2164260865},  {30-» 1073741854, 2164260865], 

-+2147483678. 2164260865},   {30 -» 14,  2164260865}} 

65}, 

My mapped expression is now ready to be passed into the GraphPlot[ {v,i -> Vj\, v,2 -> v/2, 

...} ] function. A plot of the graph is generated in which vertex v<j is connected to vertex Vj\ etc. I 

WBBBBBBk 
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also manipulate the GraphPlot options EdgeRenderingFunction, VertexRenderingFunction, 

ImageSize, MultiedgeStyle, and VertexCoordinates. EdgeRenderingFunction-> g specifies that 

each edge should be rendered with the graphics primitives given by g[ { rt, ..., rj }, { v,-, y,}, Ibly ] 

, where r„ r,- are the beginning and ending points of the edge, v,-, Vj are the beginning and ending 

vertices, and the Ibly is any label specified for the edge. For this, I pass Thick, 

getColorGraphicAttributes[#2[[2]], Rest [NeighborRules[rule, 2]]], and Arrow[#l]. I wrote the 

code for the function getColorGraphicAttributes[ rule, neighbor ]. It creates a Module[ {x,y, 

...}, expr ] of attribute colors red, blue, green, and black. These colors represent the color of the 

arrows in my program. Inside the module, I wrote a Do[ expr, {i, imi„ , imax}] checking whether 

the specified rule is contained in the list of neighbors. If it is true, I return the color at that index. 

The VertexRenderingFunction ->/specifies that each vertex should be rendered with the 

graphics primitives given by _/[?•*, v*], where r* is the coordinate position where the vertex is 

being placed, and vk is its name. I set the/to an Inset[ obj,pos ] where obj is the object to 

display and/705 is the position to place it in the graphic. 

Because the Inset[] function is very intricate, it requires special attention, which, is what I 

will discuss here. I started with the smallest portion of the code and worked outwards. I use the 

CellularAutomaton[ruZe, init, t ] function passing the neighbor rules, one and zero for init, and 

50 steps. This step creates an array of all the neighbors. I pass this array into the ArrayPlot[ array 

] with a set aspect ratio of 1/3, a medium image size, and a label of the rule number above the 

image. The ArrayPlot gets passed as the expr of the Mouseover[ expr, over ] function. 

Mouseover represents an object that displays as over when the mouse pointer is over it, and as 

expr otherwise. For the over parameter, I pass a DynamicModule[ {x, y, ...}, expr ] function. 

Here, I leave my first parameter empty but pass an EventHandler[ expr, {"event]" :> action] , 

mcimi i&uuuiuudmiffl 
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{"eve«/2" :> actionj,... } ]. With EventHandler[]'s "MouseUp" attribute, I can capture mouse 

clicks and determine what they do. For the event, I want to draw an ArrayPlot[] of 

CellularAutomaton[] like before. Only, this time I will increase the image size. This combination 

creates a larger view when the mouse hovers over the cellular automaton. Since my neighboring 

rules are correctly drawn inside my Mouseover[], I pass that as the obj of my Inset[ obj,pos ] 

with my pos being #1, which represents the central rule. 

With no MultiEdgeStyling, my next task is to place the neighbors in their correct 

locations. As previously mentioned, Rest[NeighborRules[rule, 2]] produces a list of lists with 

each inner list representing the direction from which that neighbor appears. I pass my list of 

neighbors as well as my central rule to a functioned I created called placeNeighborsInDirection[ 

neighbors, rule ]. In this method, I created a Module[ {x,y, ...}, expr ] where the east, west, 

south, and north are my symbols {x,y, ...}. Each direction takes a similar algorithm to pass the 

correct coordinates for the neighbors. 

For the x coordinate, I start at a predetermined value of six and add to that the xStep 

times the Floor[(Flatten[Position[neighbors[[l]], #]][[1]] — l)/4]. The position of each east 

rule is flattened then subtracted by one to give you a value from zero to fifteen, since there is 

only a maximum of sixteen rules possible on any given side. This value is divided by four 

because I am making a possible four-by-four grid. The floor of that number is calculated and 

multiplied by my step value. For the y coordinate, I start at negative four and add the yStep times 

Mod[(Flatten[Position[neighbors[[]],#]][[l]] - 1),4]. Similarly to the x coordinate algorithm, 

this algorithm takes the flattened position of the neighbor rules minus one and mods the 

difference by four. The result is multiplied by the yStep to populate cellular automata images 

upward in the output. To place coordinates in the west direction, I do the same process but 
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negate the x value. To place coordinates in the south direction, I swap the algorithms placement, 

respectively. Also, I start my x coordinate at negative ten instead of negative four. 

All of the steps taken up to this point have been to create a GraphPlot[] of cellular 

automata. Now, I can pass my GraphPlot[] as the expr of the Manipulate [ expr, {u, ...}, {v, ...}, 

... ] function. Here, I create my rule symbol with its initial value and a controlling mechanism 

for that symbol. I chose an InputField[ x, Number ] which represents an input field whose 

contents are taken to be a number. The number restriction feature works perfectly with my idea 

because no letters or punctuation can be typed except for a period and a negative sign. Cellular 

automaton rules cannot be negative and cannot have decimal points. To work around this, I made 

a Dynamic [] function to only accept the range from 0 to 232 - 1 by using a nested If[] statement. 

m Mi 
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Conclusion 

The application that I created can explore the radius 2 rule space in a unique and 

interactive way. No longer do scientists have to take one rule at a time in this rule space. With 

my application, the traversal of this space is quick and easy. Upon investigation through the 
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space, clusters of similar classes appear throughout. I select rule 260, which happens to be a 

Sierpinski triangle. Then, I discovered that twenty-five out of the thirty-two neighbors are also 

Siepinski triangles. 

-<K i^x. ^rK i?Sw 

■ ^g^,      ^^vi    U£^.      .^^      ^^,      ^g^v 

><x!(«.^i>«2sv                  j^siish.-ifsci«s. ^^£;^>i.><x;i?^> 
>£S>v     J<n?^*?i>vj—__]^g5v5£fc). ^ytf^S^        jft^^t^        ^<SS5Hs. 

^Xi^ ^^£35^ ^-^x ^-^S. 

This cannot be coincidence. Upon further investigation, I found that every rule I viewed was 

surrounded by extremely similar rules. No one knows why this happens. That is the magic 

question of cellular automata. If we can understand why similar rules cluster together, then 

maybe we can also understand what changes occur from one cluster to another. In the example 

above, the central rule is surrounded by similar rules. I then selected rule 261, which looks like a 

horizontal barcode. When I did, this image was the result. 

MiiiimiMSi Hi 
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So, what makes a Sierpinski triangle cluster different from this horizontal 'barcode' cluster? My 

hope is that questions like this can be answered using my application. Like Dr. Wolfram stated in 

A New Kind of Science, the methods of understanding cellular automata may be copied into other 

forms of sciences. What makes one cluster of biological cells muscle cells? What makes adjacent 

cells skin cells? The knowledge of cellular automata patterns can open doors to new types of 

sciences just like when Sir Isaac Newton and Gottfried Leibniz created calculus to explain 

physics. We may disprove randomness altogether. Deterministic systems like cellular automata 

should not produce random output. So, does this mean randomness can be calculated? Can 

randomness be predicted? If so, randomness is not truly randomness. Instead, it would be 

complex systems working in unison. 

Future 

I plan on continuing research in cellular automata for graduate work. Future 

improvements to this research should be in the k=3 area. Here, ternary output would be 
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calculated instead of binary. This means a three-dimensional representation of the space can be 

used for investigation. Creating an interactive 3-D model would be very difficult. The hardest 

part of this research paper was calculating the plot points for each rule onto a 2-D image. Adding 

a third dimension will increase the plotting difficulty exponentially. Also, representing each rule 

could be a challenge. Since the space is a lattice, I would use a sphere for each rule. Using k=3 

and r=2, a sixteen-dimensional space could be mapped to a three-dimensional object. Maybe the 

patterns will be similar to electron orbitals. Either way, these are some of the techniques and 

ideas that I intend to use for continuing my research. 

HUES 
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