
www.manaraa.com

Columbus State University Columbus State University

CSU ePress CSU ePress

Theses and Dissertations Student Publications

2014

An Investigation of Complex Systems in 16 Dimensions An Investigation of Complex Systems in 16 Dimensions

Jordon M. Huffman
Columbus State University, huffman_jordon@columbusstate.edu

Follow this and additional works at: https://csuepress.columbusstate.edu/theses_dissertations

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Huffman, Jordon M., "An Investigation of Complex Systems in 16 Dimensions" (2014). Theses and
Dissertations. 140.
https://csuepress.columbusstate.edu/theses_dissertations/140

This Thesis is brought to you for free and open access by the Student Publications at CSU ePress. It has been
accepted for inclusion in Theses and Dissertations by an authorized administrator of CSU ePress.

https://csuepress.columbusstate.edu/
https://csuepress.columbusstate.edu/theses_dissertations
https://csuepress.columbusstate.edu/student
https://csuepress.columbusstate.edu/theses_dissertations?utm_source=csuepress.columbusstate.edu%2Ftheses_dissertations%2F140&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=csuepress.columbusstate.edu%2Ftheses_dissertations%2F140&utm_medium=PDF&utm_campaign=PDFCoverPages
https://csuepress.columbusstate.edu/theses_dissertations/140?utm_source=csuepress.columbusstate.edu%2Ftheses_dissertations%2F140&utm_medium=PDF&utm_campaign=PDFCoverPages

www.manaraa.com

www.manaraa.com

An Examination of Complex Systems in 16 Dimensions
by

Jordon Huffman

A Thesis Submitted in Partial Fulfillment of
Requirements of the CSU Honors Program

for Honors in the degree of
Bachelor of Science

in

Computer Science
TSYS School of Computer Science

Columbus State University

Thesis Advisor

Committee Member

Dr. Rodrigo Obando

Dr. ChajJes Turnitsa

Honors Committee Member

Date 1&£r^>

Date (±JZ^ h Y

Date HhihH

r. Rylan Steele

Honors Program Directorfcl^jggfe?^^^ ^ Date /yO^Y

Dr. Cindy Ticknor

—■—..■ l.J.liH.IIHI.UIIUUUHl^lilllJMUJ.IIIHllIl.llH^

www.manaraa.com

Table of Contents

Abstract.

Introduction 4

Cellular Automata.

Investigation 9

Conclusion 13

Future 16

References. .18

www.manaraa.com

An Examination of Complex Systems in 16 Dimensions

Description:

With the research of Dr. Rodrigo Obando, I have created an application to observe

cellular automata rules spaces. The elementary rule space with two hundred and fifty-six rules

proves easy enough to study, but the next rule space of 4,294,967,296 rules is much more of a

challenge. Such an enormous jump makes studying each rule and its neighbors extremely time

consuming. My program takes a rule from the 4 billion rule space and displays its neighbors in

their appropriate cardinal directions.

Abstract:

Sir Isaac Newton studied the world around him. He observed unexplainable phenomena

that the math of his time could not prove. With the help of Gottfried Leibniz, he created

infinitesimal calculus to prove his theories. The new concepts he created revolutionized

science, and opened new realms of science previously unthought-of. In 2002, Dr. Stephen

Wolfram published A New Kind of Science. He argues that the processes of understanding

cellular automata can be applied to other aspects of science. Dr. Rodrigo Obando of Columbus

State University took Dr. Wolfram's work and dissected it. By breaking down the rules, he

started seeing patterns emerge in their ordering. He created a system for organizing the rules

of the elementary cellular automaton rule space with 256 rules. From there, he guided me to

the next rule space of size 4,294,967,296.1 used his procedures to examine that rule space. My

program takes a rule and displays all of the neighboring rules in that rule space. Essentially, I am

taking a node of a 16-dimensional hypercube and showing all of the neighboring nodes. This

design has not been publicly created to my or Dr. Obando's knowledge. Understanding the

patterns of cellular automata and what makes one rule different from a neighboring rule can be

applied to other forms of science. This is what Dr. Stephen Wolfram stated in A New Kind of

Science, and I firmly agree with his statement. Any exploration of the next rule space will bring

us closer to seeing Dr. Wolfram's theory come true.

www.manaraa.com

Introduction

Anytime a computer's power button is pressed or an email arrives in an inbox, anytime

the internet is viewed or a digital game is played, no one ever asks the question, "How did this

ever come to be"? Does any typical person even know how or why these machines were created?

When John von Neumann's name is mentioned, does anyone other than scientists or

mathematicians raise an eyebrow? We use technology directly influenced by him each and every

day. Von Neumann's research in automata theory is the focus of this paper, specifically with

regards to the correlation between the arrangement of the rules in this theory and the output

produced in the system.

John von Neumann was born in 1903. A child prodigy, he became one of the most

influential mathematicians of his time by his mid-twenties. Von Neumann is often referred to as

the father of computer science, as his work directly led to the creation of the first computer.

Some of his research areas included set theory, quantum theory, and automata theory. Von

Neumann's automata theory consists of cellular automata and other abstract concepts. The

Britannica Academic Edition describes cellular automata as the "simplest model of a spatially

distributed process that can be used to simulate various real-world processes". In this model,

cellular automata are represented as a two-dimensional array of blocks. The state of the current

block's neighbors changes the state of the lower block. Cellular automata simulation capabilities

present a wide range of uses for scientists and mathematicians alike. After the passing of von

Neumann in 1957, cellular automata essentially fell off most scientists' radar. With only a few

papers published on the topic from the 1960s to the 1980s, it seemed cellular automata would be

forgotten.

www.manaraa.com

In the 1980s, another child-genius-turned-scientist Dr. Stephen Wolfram awakened the

realm of cellular automata once more. Throughout the decade, Dr. Wolfram published a

collection of papers on the subject. For many years, he researched complexity and John von

Neumann's discovery of cellular automata. In 2002, Dr. Wolfram finally finished and published

A New Kind of Science. Stephen took the foundations of cellular automata laid out by John von

Neumann and expounded upon them in this book. He argued that cellular-automata-based-

computer models allow scientists to better understand the complexity of nature. In essence, he

claimed that nature functions like a computer and is not random. Dr. Wolfram's work on cellular

automata is ongoing, and with the development of his computer program, Mathematica, Dr.

Wolfram has been able to solidify funding for his research. There exists a mutually beneficial

relationship between the two. Researchers, teachers, and even students have access to

Mathematica. In fact, all the experiments performed in this paper were done so using

Mathematica.

Cellular Automata

Cellular automata are models. We can imagine that there is a series of square blocks. We

can say that each block is represented by a bit, one or zero, which represents the color of each

block. Zero is white and one is black. The route taken at this point determines how the cellular

automata react. The default choice for Dr. Wolfram was to take only one cell to the right and left

of the target cell, so that only three cells are in the scope of each decision. The formula to

represent the number of elementary cellular automata is kk ' where k is the number of states

and r is the number of cells to examine on both sides, the radius. The elementary cellular

automata rule space uses k - 2 (binary: 0, 1) and r = 1 (three cells to use: central, left, and right).

The formula for the elementary rule space is 22 = 256. There are two hundred and fifty-six

B&&BBBBS2B&

www.manaraa.com

6

rules in the smallest cellular automata rule space. If we simply increase the number of cells used

by one on each side, (2(2) + 1), our equation becomes 2Z = 4,294,967,296. That means there are

four billion two hundred ninety-four million nine hundred sixty-seven thousand two hundred and

ninety-six rules!

Each rule produces a distinct graph. Dr. Stephen Wolfram only used the elementary

cellular automata for that reason. In his book, he listed and ordered the two hundred and fifty-six

rules sequentially. With sequential ordering, no obvious patterns exist throughout the rule space.

Dr. Rodrigo Obando undertook the task of discovering why there were no discernible patterns.

The big picture is that the inputs to the bit string as well as the rules are deterministic; we know

exactly what the bits and rules are before we apply the rules. However, the output seems random.

This is a problem mathematically, scientifically, and philosophically. No deterministic system

should produce random output. Dr. Stephen Wolfram accepted the fact that the distribution of

behavior is random, but Dr. Obando could not let the thought slide so easily. Instead, he created

a program that performs specifically designed algorithms on each rule which allows him to

partially organize the rules.

Cellular automata rules are categorized into one of three classes: Class 1, Class 2, Class

3, and Class 4. Class 1 is uniform. There are no variations from cell to cell. Class 2 is semi-

uniform. Here, the uniformity can be seen, but inconsistencies with neighboring cells make

distinctly not uniform patterns. Class 3 is random. The randomness of Class 3 cellular automata

creates more questions than answers. How can deterministic values produce seemingly random

output? Below are examples of these classes:

www.manaraa.com

An example of Class 1: Rule 222

An example of Class 2: Rule 112

An example of Class 3: Rule 135

After using his program to organize the rules into a grid, Dr. Obando noticed something

peculiar. Clusters of similar classes showed over the entire grid. After further investigation, there

www.manaraa.com

appeared to be a pattern when moving from one rule to the next on the grid. This paper is

comprised of an explanation of the movement between rule spaces. I created a program that

traverses the 4 billion rule space using Dr. Rodrigo Obando's designs and research.

Example Rule:

rule JO

IT) rnm

o o

Rule 30 from the elementary cellular automata rule space (256) is shown above. The first

row of inputs is deterministic. The middle bit is flipped. Then, the rules are applied giving this

seemingly random output. Below is the same rule, expanded.

The more a rule is expanded, the easier the patterns are to detect. Many computer scientists break

down Class 3 into two parts, saying that Class 3 is completely random while Class 4 is complex

www.manaraa.com

9

(uniform parts and random parts). In Rule 110, we can see distribution of semi-uniform and

random portions, so it is Class 4.

Investigation

The elementary rule space investigation of 256 rules proves easy enough.

Scientist can look at each rule and its neighbors without too much trouble. However, the 4 billion

rule space is not such an easy task. Viewing the entire space at once takes too much computer

memory and requires huge screens. Most scientists condense the space to one rule at a time. Dr.

Obando's research tries to find clusters of similar classes. I created a tool using Mathematica to

view a rule and its neighbors. This paints a better picture of the surrounding rules rather than just

seeing a rule individually.

First, I take a rule. By default, the rule is 0 unless specified by the user. Then, I

create a list of the neighboring rules by using Rest[NeighborRules[rule, 2]]. The NeighborRules[

rule, radius] function takes a rule and a radius. Then, it creates a list of lists with the rule and

neighbors as subsets in each cardinal direction. The Rest[expr] function makes a new list out of

§22£3S£3S2S£

www.manaraa.com

10

all list components other than the first element. This leaves me with a list of lists of neighboring

rules. The Flatten[list] function takes my list of lists and consolidates each inner list into a

single complete list. The results are as follows:

Res t[NeighborRules[rule, 2]]

Flatten[Rest[NeighborRules[rule, 2]]]

{{31, 286, 542, 1054, 2078, 65 566, 131102, 262174,

524 318, 16 777 246, 33 554 462, 67108 894, 134 217 758}, {22, 26, 28},

{62, §4, 158, 4126, 8222, 16414, 32 798, 1048 606, 2097182, 4194 334,

8388638, 268 435486, 536870942, 1073741854, 2147483678}, {14}}

{31, 286, 542, 1054, 2078, 65 566, 131102, 262174, 524 318, 16 777246, 33 554 462,

67108 894, 134 217 758, 22, 26, 28, 62, 94, 158, 4126, 8222, 16 414, 32 798, 1048 606,

2 097182, 4194 334, 8 388 638, 268 435 486, 536 870 942, 1073 741854, 2147 483 678, 14} J

Then, I pass that resulting list into the Map[/ expr] function as the expression along with my

variables rule and str as the function. Map[] takes the rule and maps it to each piece of my list to

give the following output:

Map [{rule-* if, *tr) £, Flatten [Rest [NeighborRules [rule, 2]]]] J
{{30

{30

{30

{30

{30

{30

{30

{30

{30

{30

{30

{30

{30

-i 31, 2164 260865}, 286, 2164260865}, {30-,542, 2164260665},

-* 1054, 2164 260 865}, {30-> 2078, 2164 260 865}, {30 -* 65 566, 2164 260 865},

•» 131102, 2164 260 865}, {30'-# 262174, 2164 260 865},

-* 524 318, 2164 260 865}, {30-* 16 777 246, 2164 260 865},

-, 33554462, 2164260 865}, {30 -» 67108 894, 2164 260 865},

-* 134217758, 2164260865}, {30 •* 21, 2164260865}, {30-26, 2164260865},

-,28, 2164260865}, {30-» 62, 2164260865}, [30-» 94, 2164260B65},

•♦158, 2164260865}, {30-* 4126, 2164260865}, {30-> 8222, 2164260865},

-16 414, 2164 260 865}, {30-32 798, 2164 260 865}, {30-1048 606, 2164 260 8

-» 2 097182, 2164 260 865}, {30-, 4 194 334, 2164 260 865},

-» 8388638, 2164260865}, {30^268 435 486, 2164260865},

-» 536870942, 2164260865}, {30-» 1073741854, 2164260865],

-+2147483678. 2164260865}, {30 -» 14, 2164260865}}

65},

My mapped expression is now ready to be passed into the GraphPlot[{v,i -> Vj\, v,2 -> v/2,

...}] function. A plot of the graph is generated in which vertex v<j is connected to vertex Vj\ etc. I

WBBBBBBk

www.manaraa.com

11

also manipulate the GraphPlot options EdgeRenderingFunction, VertexRenderingFunction,

ImageSize, MultiedgeStyle, and VertexCoordinates. EdgeRenderingFunction-> g specifies that

each edge should be rendered with the graphics primitives given by g[{ rt, ..., rj }, { v,-, y,}, Ibly]

, where r„ r,- are the beginning and ending points of the edge, v,-, Vj are the beginning and ending

vertices, and the Ibly is any label specified for the edge. For this, I pass Thick,

getColorGraphicAttributes[#2[[2]], Rest [NeighborRules[rule, 2]]], and Arrow[#l]. I wrote the

code for the function getColorGraphicAttributes[rule, neighbor]. It creates a Module[{x,y,

...}, expr] of attribute colors red, blue, green, and black. These colors represent the color of the

arrows in my program. Inside the module, I wrote a Do[expr, {i, imi„ , imax}] checking whether

the specified rule is contained in the list of neighbors. If it is true, I return the color at that index.

The VertexRenderingFunction ->/specifies that each vertex should be rendered with the

graphics primitives given by _/[?•*, v*], where r* is the coordinate position where the vertex is

being placed, and vk is its name. I set the/to an Inset[obj,pos] where obj is the object to

display and/705 is the position to place it in the graphic.

Because the Inset[] function is very intricate, it requires special attention, which, is what I

will discuss here. I started with the smallest portion of the code and worked outwards. I use the

CellularAutomaton[ruZe, init, t] function passing the neighbor rules, one and zero for init, and

50 steps. This step creates an array of all the neighbors. I pass this array into the ArrayPlot[array

] with a set aspect ratio of 1/3, a medium image size, and a label of the rule number above the

image. The ArrayPlot gets passed as the expr of the Mouseover[expr, over] function.

Mouseover represents an object that displays as over when the mouse pointer is over it, and as

expr otherwise. For the over parameter, I pass a DynamicModule[{x, y, ...}, expr] function.

Here, I leave my first parameter empty but pass an EventHandler[expr, {"event]" :> action] ,

mcimi i&uuuiuudmiffl

www.manaraa.com

12

{"eve«/2" :> actionj,... }]. With EventHandler[]'s "MouseUp" attribute, I can capture mouse

clicks and determine what they do. For the event, I want to draw an ArrayPlot[] of

CellularAutomaton[] like before. Only, this time I will increase the image size. This combination

creates a larger view when the mouse hovers over the cellular automaton. Since my neighboring

rules are correctly drawn inside my Mouseover[], I pass that as the obj of my Inset[obj,pos]

with my pos being #1, which represents the central rule.

With no MultiEdgeStyling, my next task is to place the neighbors in their correct

locations. As previously mentioned, Rest[NeighborRules[rule, 2]] produces a list of lists with

each inner list representing the direction from which that neighbor appears. I pass my list of

neighbors as well as my central rule to a functioned I created called placeNeighborsInDirection[

neighbors, rule]. In this method, I created a Module[{x,y, ...}, expr] where the east, west,

south, and north are my symbols {x,y, ...}. Each direction takes a similar algorithm to pass the

correct coordinates for the neighbors.

For the x coordinate, I start at a predetermined value of six and add to that the xStep

times the Floor[(Flatten[Position[neighbors[[l]], #]][[1]] — l)/4]. The position of each east

rule is flattened then subtracted by one to give you a value from zero to fifteen, since there is

only a maximum of sixteen rules possible on any given side. This value is divided by four

because I am making a possible four-by-four grid. The floor of that number is calculated and

multiplied by my step value. For the y coordinate, I start at negative four and add the yStep times

Mod[(Flatten[Position[neighbors[[]],#]][[l]] - 1),4]. Similarly to the x coordinate algorithm,

this algorithm takes the flattened position of the neighbor rules minus one and mods the

difference by four. The result is multiplied by the yStep to populate cellular automata images

upward in the output. To place coordinates in the west direction, I do the same process but

www.manaraa.com

13

negate the x value. To place coordinates in the south direction, I swap the algorithms placement,

respectively. Also, I start my x coordinate at negative ten instead of negative four.

All of the steps taken up to this point have been to create a GraphPlot[] of cellular

automata. Now, I can pass my GraphPlot[] as the expr of the Manipulate [expr, {u, ...}, {v, ...},

...] function. Here, I create my rule symbol with its initial value and a controlling mechanism

for that symbol. I chose an InputField[x, Number] which represents an input field whose

contents are taken to be a number. The number restriction feature works perfectly with my idea

because no letters or punctuation can be typed except for a period and a negative sign. Cellular

automaton rules cannot be negative and cannot have decimal points. To work around this, I made

a Dynamic [] function to only accept the range from 0 to 232 - 1 by using a nested If[] statement.

m Mi

www.manaraa.com

14

■.« jwsy

Conclusion

The application that I created can explore the radius 2 rule space in a unique and

interactive way. No longer do scientists have to take one rule at a time in this rule space. With

my application, the traversal of this space is quick and easy. Upon investigation through the

www.manaraa.com

15

space, clusters of similar classes appear throughout. I select rule 260, which happens to be a

Sierpinski triangle. Then, I discovered that twenty-five out of the thirty-two neighbors are also

Siepinski triangles.

-<K i^x. ^rK i?Sw

■ ^g^, ^^vi U£^. .^^ ^^, ^g^v

><x!(«.^i>«2sv j^siish.-ifsci«s. ^^£;^>i.><x;i?^>
>£S>v J<n?^*?i>vj—__]^g5v5£fc). ^ytf^S^ jft^^t^ ^<SS5Hs.

^Xi^ ^^£35^ ^-^x ^-^S.

This cannot be coincidence. Upon further investigation, I found that every rule I viewed was

surrounded by extremely similar rules. No one knows why this happens. That is the magic

question of cellular automata. If we can understand why similar rules cluster together, then

maybe we can also understand what changes occur from one cluster to another. In the example

above, the central rule is surrounded by similar rules. I then selected rule 261, which looks like a

horizontal barcode. When I did, this image was the result.

MiiiimiMSi Hi

www.manaraa.com

16

So, what makes a Sierpinski triangle cluster different from this horizontal 'barcode' cluster? My

hope is that questions like this can be answered using my application. Like Dr. Wolfram stated in

A New Kind of Science, the methods of understanding cellular automata may be copied into other

forms of sciences. What makes one cluster of biological cells muscle cells? What makes adjacent

cells skin cells? The knowledge of cellular automata patterns can open doors to new types of

sciences just like when Sir Isaac Newton and Gottfried Leibniz created calculus to explain

physics. We may disprove randomness altogether. Deterministic systems like cellular automata

should not produce random output. So, does this mean randomness can be calculated? Can

randomness be predicted? If so, randomness is not truly randomness. Instead, it would be

complex systems working in unison.

Future

I plan on continuing research in cellular automata for graduate work. Future

improvements to this research should be in the k=3 area. Here, ternary output would be

www.manaraa.com

17

calculated instead of binary. This means a three-dimensional representation of the space can be

used for investigation. Creating an interactive 3-D model would be very difficult. The hardest

part of this research paper was calculating the plot points for each rule onto a 2-D image. Adding

a third dimension will increase the plotting difficulty exponentially. Also, representing each rule

could be a challenge. Since the space is a lattice, I would use a sphere for each rule. Using k=3

and r=2, a sixteen-dimensional space could be mapped to a three-dimensional object. Maybe the

patterns will be similar to electron orbitals. Either way, these are some of the techniques and

ideas that I intend to use for continuing my research.

HUES

www.manaraa.com

18

References:

• "Cellular Automata (CA)." Encyclopaedia Britannica. Encyclopaedia Britannica Online
Academic Edition. Encyclopaedia Britannica Inc., 2013. Web. 09 Dec. 2013.
<http://www.britannica.com/EBchecked/topic/862593/cellular-automata>.

• "Evolving Cellular Automata." Everything is a Ghetto, n.p. 2013. Web. 09 Dec. 2013. <
http://www.thattommyhall.com/2013/07/04/evolving-cellular-automata/>.

• "File: Rule 30 2000 Generations." PiAndWhippedCream. WikiMedia Commons., 2012.
Web. 09 Dec. 2013.
<http://commons.wikimedia.Org/wiki/File:Rule_30_2000Generations.png>.

• "John von Neumann." Encyclopaedia Britannica. Encyclopaedia Britannica Online
Academic Edition. Encyclopaedia Britannica Inc., 2013. Web. 09 Dec. 2013.
<http://www.britannica.com/EBchecked/topic/632750/John-von-Neumann>.

• "Rule 110." Wolfram Math World, n.p. n.d. Web. 16 April 2014.
<http://mathworld.wolfram.com/Rule 110.html>

• "Rule 135." Wolfrule.com. n.p. n.d. Web. 09 Dec. 2013.
<http://www.wolfrule.com/pages/rules/135.html>.

"Stephen Wolfram." Encyclopaedia Britannica. Encyclopaedia Britannica Online
Academic Edition. Encyclopaedia Britannica Inc., 2013. Web. 09 Dec. 2013.
<http://www.britannica.com/EBchecked/topic/862591/Stephen-Wolfram>.

"The 256 Rules." Stanford Encyclopedia of Philosophy. Francesco Berto and Jacopo
Tagliabue., 2012. Web. 09 Dec. 2013. <http://plato.stanford.edu/entries/cellular-
automata/supplement.html>.

"The Nature of Code." Daniel Shiffman. Daniel Shiftman., n.d. Web. 09 Dec. 2013. <
http://natureofcode.com/book/chapter-7-cellular-automata/>.

www.manaraa.com

	An Investigation of Complex Systems in 16 Dimensions
	Recommended Citation

	An Investigation of Complex Systems in 16 Dimensions

